p-group, metabelian, nilpotent (class 3), monomial
Aliases: C23⋊3SD16, C24.80D4, C4⋊C4⋊5D4, (C2×C8)⋊19D4, (C2×Q8)⋊5D4, (C2×D4).85D4, C4.61C22≀C2, C4.27(C4⋊1D4), C2.16(C8⋊D4), C2.16(C8⋊8D4), C4.14(C4⋊D4), C23.897(C2×D4), (C22×C4).138D4, C2.28(D4⋊D4), C22.4Q16⋊42C2, C2.18(Q8⋊D4), (C22×SD16)⋊11C2, C2.5(C23⋊2D4), C22.90(C2×SD16), C22.193C22≀C2, C2.27(D4.7D4), C2.18(C22⋊SD16), C22.101(C4○D8), (C23×C4).268C22, (C22×C8).317C22, (C22×D4).57C22, (C22×Q8).46C22, C22.218(C4⋊D4), C22.128(C8⋊C22), (C22×C4).1431C23, C22.116(C8.C22), (C2×C22⋊Q8)⋊1C2, (C2×C22⋊C8)⋊31C2, (C2×D4⋊C4)⋊11C2, (C2×Q8⋊C4)⋊11C2, (C2×C4⋊D4).12C2, (C2×C4).1021(C2×D4), (C2×C4).614(C4○D4), (C2×C4⋊C4).102C22, SmallGroup(128,732)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23⋊3SD16
G = < a,b,c,d,e | a2=b2=c2=d8=e2=1, ab=ba, eae=ac=ca, dad-1=abc, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=d3 >
Subgroups: 528 in 222 conjugacy classes, 56 normal (44 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, SD16, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C24, C24, C22⋊C8, D4⋊C4, Q8⋊C4, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C4⋊D4, C22⋊Q8, C22×C8, C2×SD16, C23×C4, C22×D4, C22×D4, C22×Q8, C22.4Q16, C2×C22⋊C8, C2×D4⋊C4, C2×Q8⋊C4, C2×C4⋊D4, C2×C22⋊Q8, C22×SD16, C23⋊3SD16
Quotients: C1, C2, C22, D4, C23, SD16, C2×D4, C4○D4, C22≀C2, C4⋊D4, C4⋊1D4, C2×SD16, C4○D8, C8⋊C22, C8.C22, C23⋊2D4, Q8⋊D4, D4⋊D4, C22⋊SD16, D4.7D4, C8⋊8D4, C8⋊D4, C23⋊3SD16
(1 52)(2 60)(3 54)(4 62)(5 56)(6 64)(7 50)(8 58)(9 20)(10 27)(11 22)(12 29)(13 24)(14 31)(15 18)(16 25)(17 43)(19 45)(21 47)(23 41)(26 46)(28 48)(30 42)(32 44)(33 63)(34 49)(35 57)(36 51)(37 59)(38 53)(39 61)(40 55)
(1 28)(2 29)(3 30)(4 31)(5 32)(6 25)(7 26)(8 27)(9 57)(10 58)(11 59)(12 60)(13 61)(14 62)(15 63)(16 64)(17 40)(18 33)(19 34)(20 35)(21 36)(22 37)(23 38)(24 39)(41 53)(42 54)(43 55)(44 56)(45 49)(46 50)(47 51)(48 52)
(1 22)(2 23)(3 24)(4 17)(5 18)(6 19)(7 20)(8 21)(9 50)(10 51)(11 52)(12 53)(13 54)(14 55)(15 56)(16 49)(25 34)(26 35)(27 36)(28 37)(29 38)(30 39)(31 40)(32 33)(41 60)(42 61)(43 62)(44 63)(45 64)(46 57)(47 58)(48 59)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(2 4)(3 7)(6 8)(9 54)(10 49)(11 52)(12 55)(13 50)(14 53)(15 56)(16 51)(17 23)(19 21)(20 24)(25 27)(26 30)(29 31)(34 36)(35 39)(38 40)(41 62)(42 57)(43 60)(44 63)(45 58)(46 61)(47 64)(48 59)
G:=sub<Sym(64)| (1,52)(2,60)(3,54)(4,62)(5,56)(6,64)(7,50)(8,58)(9,20)(10,27)(11,22)(12,29)(13,24)(14,31)(15,18)(16,25)(17,43)(19,45)(21,47)(23,41)(26,46)(28,48)(30,42)(32,44)(33,63)(34,49)(35,57)(36,51)(37,59)(38,53)(39,61)(40,55), (1,28)(2,29)(3,30)(4,31)(5,32)(6,25)(7,26)(8,27)(9,57)(10,58)(11,59)(12,60)(13,61)(14,62)(15,63)(16,64)(17,40)(18,33)(19,34)(20,35)(21,36)(22,37)(23,38)(24,39)(41,53)(42,54)(43,55)(44,56)(45,49)(46,50)(47,51)(48,52), (1,22)(2,23)(3,24)(4,17)(5,18)(6,19)(7,20)(8,21)(9,50)(10,51)(11,52)(12,53)(13,54)(14,55)(15,56)(16,49)(25,34)(26,35)(27,36)(28,37)(29,38)(30,39)(31,40)(32,33)(41,60)(42,61)(43,62)(44,63)(45,64)(46,57)(47,58)(48,59), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (2,4)(3,7)(6,8)(9,54)(10,49)(11,52)(12,55)(13,50)(14,53)(15,56)(16,51)(17,23)(19,21)(20,24)(25,27)(26,30)(29,31)(34,36)(35,39)(38,40)(41,62)(42,57)(43,60)(44,63)(45,58)(46,61)(47,64)(48,59)>;
G:=Group( (1,52)(2,60)(3,54)(4,62)(5,56)(6,64)(7,50)(8,58)(9,20)(10,27)(11,22)(12,29)(13,24)(14,31)(15,18)(16,25)(17,43)(19,45)(21,47)(23,41)(26,46)(28,48)(30,42)(32,44)(33,63)(34,49)(35,57)(36,51)(37,59)(38,53)(39,61)(40,55), (1,28)(2,29)(3,30)(4,31)(5,32)(6,25)(7,26)(8,27)(9,57)(10,58)(11,59)(12,60)(13,61)(14,62)(15,63)(16,64)(17,40)(18,33)(19,34)(20,35)(21,36)(22,37)(23,38)(24,39)(41,53)(42,54)(43,55)(44,56)(45,49)(46,50)(47,51)(48,52), (1,22)(2,23)(3,24)(4,17)(5,18)(6,19)(7,20)(8,21)(9,50)(10,51)(11,52)(12,53)(13,54)(14,55)(15,56)(16,49)(25,34)(26,35)(27,36)(28,37)(29,38)(30,39)(31,40)(32,33)(41,60)(42,61)(43,62)(44,63)(45,64)(46,57)(47,58)(48,59), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (2,4)(3,7)(6,8)(9,54)(10,49)(11,52)(12,55)(13,50)(14,53)(15,56)(16,51)(17,23)(19,21)(20,24)(25,27)(26,30)(29,31)(34,36)(35,39)(38,40)(41,62)(42,57)(43,60)(44,63)(45,58)(46,61)(47,64)(48,59) );
G=PermutationGroup([[(1,52),(2,60),(3,54),(4,62),(5,56),(6,64),(7,50),(8,58),(9,20),(10,27),(11,22),(12,29),(13,24),(14,31),(15,18),(16,25),(17,43),(19,45),(21,47),(23,41),(26,46),(28,48),(30,42),(32,44),(33,63),(34,49),(35,57),(36,51),(37,59),(38,53),(39,61),(40,55)], [(1,28),(2,29),(3,30),(4,31),(5,32),(6,25),(7,26),(8,27),(9,57),(10,58),(11,59),(12,60),(13,61),(14,62),(15,63),(16,64),(17,40),(18,33),(19,34),(20,35),(21,36),(22,37),(23,38),(24,39),(41,53),(42,54),(43,55),(44,56),(45,49),(46,50),(47,51),(48,52)], [(1,22),(2,23),(3,24),(4,17),(5,18),(6,19),(7,20),(8,21),(9,50),(10,51),(11,52),(12,53),(13,54),(14,55),(15,56),(16,49),(25,34),(26,35),(27,36),(28,37),(29,38),(30,39),(31,40),(32,33),(41,60),(42,61),(43,62),(44,63),(45,64),(46,57),(47,58),(48,59)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(2,4),(3,7),(6,8),(9,54),(10,49),(11,52),(12,55),(13,50),(14,53),(15,56),(16,51),(17,23),(19,21),(20,24),(25,27),(26,30),(29,31),(34,36),(35,39),(38,40),(41,62),(42,57),(43,60),(44,63),(45,58),(46,61),(47,64),(48,59)]])
32 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 4A | 4B | 4C | 4D | 4E | 4F | 4G | ··· | 4L | 8A | ··· | 8H |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 8 | 8 | 2 | 2 | 2 | 2 | 4 | 4 | 8 | ··· | 8 | 4 | ··· | 4 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | D4 | D4 | D4 | C4○D4 | SD16 | C4○D8 | C8⋊C22 | C8.C22 |
kernel | C23⋊3SD16 | C22.4Q16 | C2×C22⋊C8 | C2×D4⋊C4 | C2×Q8⋊C4 | C2×C4⋊D4 | C2×C22⋊Q8 | C22×SD16 | C4⋊C4 | C2×C8 | C22×C4 | C2×D4 | C2×Q8 | C24 | C2×C4 | C23 | C22 | C22 | C22 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 2 | 1 | 2 | 2 | 1 | 2 | 4 | 4 | 1 | 1 |
Matrix representation of C23⋊3SD16 ►in GL6(𝔽17)
0 | 4 | 0 | 0 | 0 | 0 |
13 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 15 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
12 | 5 | 0 | 0 | 0 | 0 |
12 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 8 | 0 | 0 |
0 | 0 | 0 | 13 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 16 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
G:=sub<GL(6,GF(17))| [0,13,0,0,0,0,4,0,0,0,0,0,0,0,16,0,0,0,0,0,15,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[12,12,0,0,0,0,5,12,0,0,0,0,0,0,4,0,0,0,0,0,8,13,0,0,0,0,0,0,1,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,16,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16] >;
C23⋊3SD16 in GAP, Magma, Sage, TeX
C_2^3\rtimes_3{\rm SD}_{16}
% in TeX
G:=Group("C2^3:3SD16");
// GroupNames label
G:=SmallGroup(128,732);
// by ID
G=gap.SmallGroup(128,732);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,448,141,422,387,2019,1018,248]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^8=e^2=1,a*b=b*a,e*a*e=a*c=c*a,d*a*d^-1=a*b*c,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^3>;
// generators/relations